

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Queryables

Grapl provides powerful primitives for building graph based queries.

At the root of this query logic is the Queryable base class, though
you shouldn’t ever have to work with that directly.

Queries are themselves Python classes that can be composed and constrained.

A simple query would look like this:

ProcessQuery()

This query describes a process - any process, it’s totally unconstrained.

We can execute this query in a few ways. Here are three examples,

mclient = MasterGraphClient()

all_processes = ProcessQuery().query(mclient)
one_process = ProcessQuery().query_first(mclient)
count = ProcessQuery().get_count(mclient)

Queryable.query

Query the graph for all nodes that match.

graph_client - a GraphClient, which will determine which database to query
contains_node_key - a node_key that must exist somewhere in the query
first - return only the first first nodes. Defaults to 1000.
When contains_node_key, first is set to 1.

returns - a list of nodes that matched your query

 def query(
 self,
 graph_client: GraphClient,
 contains_node_key: Optional[str] = None,
 first: Optional[int] = 1000,
) -> List["NV"]:
 pass

Queryable.query_first

Query the graph for the first node that matches.

graph_client - a GraphClient, which will determine which database to query
contains_node_key - a node_key that must exist somewhere in the query

returns - a list of nodes that matched your query

 def query_first(
 self,
 graph_client: GraphClient,
 contains_node_key: Optional[str] = None
) -> Optional["NV"]:
 pass

Queryable.get_count

Query the graph, counting all matches.

graph_client - a GraphClient, which will determine which database to query
first - count up to first, and then stop.

returns - the number of matches for this query. If first is set, only count up to first.

 def get_count(
 self,
 graph_client: GraphClient,
 first: Optional[int] = None,
) -> int:
 pass

contains_node_key

In some cases, such as when writing Grapl Analyzers, we want to execute a query
where a node’s node_key may be anywhere in that graph.

For example,

query = (
 ProcessQuery() # A
 .with_bin_file(
 FileQuery() # B
 .with_spawned_from(
 ProcessQuery() # C
)
)
)

query.query_first(mclient, contains_node_key="node-key-to-query")

In this case, if our signature matches such that any of the nodes A, B, C, have the node_key
“node-key-to-query”, we have a match - otherwise, no match.

And, Or, Not

And

For a single predicate constraint (with_* method) all constraints are considered And’d.

This query matches a process name that contains both “foo” and “bar”.

ProcessQuery()
.with_process_name(contains=["foo", "bar"])

Or

Multiple predicate constraints are considered Or’d.

This query matches a process name that contains either “foo” or “bar”.

ProcessQuery()
.with_process_name(contains="foo")
.with_process_name(contains="bar")

Not

Any constraint can be wrapped in a Not to negate the constraint.

This query matches a process name that is not “foo”.

ProcessQuery()
.with_process_name(contains=Not("foo"))

All Together

This query matches a process with a process_name that either is not ‘foo’ but ends
with ‘.exe’, or it will match a process with a process containing “bar” and “baz”.

ProcessQuery()
.with_process_name(contains=Not("foo"), ends_eith=".exe")
.with_process_name(contains=["bar", baz])

with_* methods

Most Queryable classes provide a suite of methods starting with with_*.

For example, ProcessQuery provides a with_process_name.

ProcessQuery.with_process_name

def with_process_name(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> ProcessQuery:
 pass

The process_name field is indexed such that we can constrain our query through:

eq

Matches a node’s process_name if it exactly matches eq

ProcessQuery().with_process_name(eq="svchost.exe")

contains

Matches a node’s process_name if it contains contains

ProcessQuery().with_process_name(contains="svc")

ends_with

Matches a node’s process_name if it ends with ends_with

ProcessQuery().with_process_name(ends_with=".exe")

starts_with

Matches a node’s process_name if it starts with starts_with

ProcessQuery().with_process_name(starts_with="svchost")

regexp

Matches a node’s process_name if it matches the regexp pattern regexp

ProcessQuery().with_process_name(regexp="svc.*exe")

distance

Matches a node’s process_name if it has a string distance of less than
the provided threshold

ProcessQuery().with_process_name(distance=("svchost", 2))

Example

Here’s an example where we look for processes with a process_name that is not
equal to svchost.exe, but that has a very close string distance to it.

ProcessQuery()
.with_process_name(eq=Not("svchost.exe"), distance=("svchost", 2))

 Once you’ve written your Analyzers you’ll want to deploy them to Grapl.

Analyzers live in the <BUCKET_PREFIX>-grapl-analyzers, so all we need to do
is upload the files to that bucket. If you’re using a local version of Grapl the
BUCKET_PREFIX is always local-grapl.

Analyzers should be deployed with a key of the form:
analyzer_name/main.py.

If you’re uploading to a local Grapl,

AWS_ACCESS_KEY_ID=minioadmin \
AWS_SECRET_ACCESS_KEY=minioadmin
aws s3 cp \
<path to analyzer> \
s3://local-grapl-analyzers-bucket/analyzers/<analyzer_name>/main.py \
--endpoint-url=http://localhost:9000

Otherwise, for an AWS deployed Grapl,

aws s3 cp \
<path to analyzer> \
s3://<BUCKET_PREFIX>-analyzers-bucket/analyzers/<analyzer_name>/main.py \

Deploying from Github

We can keep our detection logic in Github, which will allow us to perform code reviews,
linting, and automate the deployment of our analyzers.

As an example, insanitybit/grapl-analyzers [https://github.com/insanitybit/grapl-analyzers] is set up to use this webhook.

Deploy

To get started you’ll need to install npm [https://www.npmjs.com/], typescript [https://www.typescriptlang.org/index.html#download-links], and the aws-cdk [https://github.com/awslabs/aws-cdk#getting-started].

Clone the repo:
git clone git@github.com:insanitybit/grapl-analyzer-deployer.git

Change directories into the /grapl-analyzer-deployer/analyzer-deployer-cdk/ folder.

You’ll need to fill out a .env file with the following and place is it in the analyzer-deployer-cdk folder.

Variables:
GITHUB_SHARED_SECRET The secret used by the server to authenticate the client.
Consider using the output of: ruby -rsecurerandom -e 'puts SecureRandom.hex(20)'
GITHUB_ACCESS_TOKEN This is a “Personal Access Token” generated by github.

BUCKET_PREFIX This is the unique bucket prefix for your Grapl deployment.

Example:

GITHUB_SHARED_SECRET="dba0bf0df5e2887e737990a35f356ff7e23a56c5"
GITHUB_ACCESS_TOKEN="58b37668a1d3f9f1fa82f1e99604d58ecbf1333b"
BUCKET_PREFIX="exampleco"

(You may need to build dependencies with npm i)
Run ./deploy.sh

Setting up the Webhook

https://developer.github.com/webhooks/creating/

Set the webhook url to the API Gateway created by your CDK deployment of Grapl.
Set the secret to the value of GITHUB_SHARED_SECRET.

Analyzers

Analyzers are the attack signatures that power Grapl’s realtime detection logic.

Though implementing analyzers is simple, we can build extremely powerful and efficient
logic to catch all sorts of attacker behaviors.

The Analyzer Base Class

To implement an Analyzer we must inherit from the Analyzer abstract base class [https://docs.python.org/3/library/abc.html].

A = TypeVar("A", bound="Analyzer")

class Analyzer(abc.ABC):
 def __init__(self, dgraph_client: GraphClient) -> None:
 self.dgraph_client = dgraph_client

 @classmethod
 def build(cls: Type[A], dgraph_client: GraphClient) -> A:
 return cls(dgraph_client)

 @abc.abstractmethod
 def get_queries(self) -> OneOrMany[Queryable]:
 pass

 @abc.abstractmethod
 def on_response(self, response: Viewable, output: Any):
 pass

Analyzer.build

Returns an instance of your analyzer. This allows you to move dependency management
out of your __init__.

cls - the Class for your analyzer, which you should use for construction.
graph_client - an instance of a GraphClient

@classmethod
def build(cls: Type[A], graph_client: GraphClient) -> A:
 return cls(dgraph_client)

Analyzer.get_queries

get_queries is where you define any of your graph signatures, either one or multiple.

All queries returned must have the same type for the root node.

returns - all signatures to be matched against.

@abc.abstractmethod
def get_queries(self) -> OneOrMany[Queryable]:
 pass

Analyzer.on_response

on_response is called if any of the sigantures from get_queries matched a graph.

This method is where you can perform any subsequent logic that you couldn’t fit into your
query, such as hitting an external threatfeed API, performing a count, etc.

response - Guaranteed to be the Viewable type associated with the Queryable(s) returned
by get_queries

output - Provides a send method that takes an ExecutionHit

@abc.abstractmethod
def on_response(self, response: Viewable, output: Any):
 pass

SuspiciousSvchost Example

Heres an example - we’re going to write some logic to look for suspicious executions
of svchost.

class SuspiciousSvchost(Analyzer):

 def get_queries(self) -> OneOrMany[ProcessQuery]:
 invalid_parents = [
 Not("services.exe"),
 Not("smss.exe"),
 Not("ngentask.exe"),
 Not("userinit.exe"),
 Not("GoogleUpdate.exe"),
 Not("conhost.exe"),
 Not("MpCmdRun.exe"),
]

 return (
 ProcessQuery()
 .with_process_name(eq=invalid_parents)
 .with_children(
 ProcessQuery().with_process_name(eq="svchost.exe")
)
)

 def on_response(self, response: ProcessView, output: Any):
 output.send(
 ExecutionHit(
 analyzer_name="Suspicious svchost",
 node_view=response,
 risk_score=75,
)
)

We’ve got a very straightforward Analyzer here. We don’t need any custom build or init,
and our on_response contains no logic other than sending out an ExecutionHit.

 def get_queries(self) -> OneOrMany[ProcessQuery]:
 invalid_parents = [
 Not("services.exe"),
 Not("smss.exe"),
 Not("ngentask.exe"),
 Not("userinit.exe"),
 Not("GoogleUpdate.exe"),
 Not("conhost.exe"),
 Not("MpCmdRun.exe"),
]

 return (
 ProcessQuery()
 .with_process_name(eq=invalid_parents)
 .with_children(
 ProcessQuery().with_process_name(eq="svchost.exe")
)
)

The query is straightforward. We have a curated whitelist of parent processes for svchost.exe.

Any process that is not one of those is considered “invalid”.

 ProcessQuery() # Any Process
 .with_process_name(eq=invalid_parents) # With an invalid parent process name
 .with_children(# With any child processes
 ProcessQuery()
 .with_process_name(eq="svchost.exe") # With the process name "svchost.exe".
)

Our query is therefor read as:
Any Process, with a process_name that exactly matches invalid_parents, with any child process,
where the child process_name that exactly matches svchost.exe.

Adding Context

We may want to add some optional context to our query, without requiring that context
for our Analyzer to match. We can do this easily in our on_response implenentation.

In the on_response method the response is going to be the root node of what our query
matched - in our case, this will be some invalid parent of svchost.exe.

Some interesting context might be to get the binary path of that svchost.exe and
the parent process of our invalid_parent.

 def on_response(self, response: ProcessView, output: Any):
 # Let's get the parent of our invalid_parent
 response.get_parent()

 # And the binary paths for any suspect child processes
 for child in response.children:
 if child.get_bin_file():
 child.bin_file.get_file_path()

 output.send(
 ExecutionHit(
 analyzer_name="Suspicious svchost",
 node_view=response,
 risk_score=75,
)
)

Unlike with the queries in get_queries', which have to be an exact match, our context is purely optional. We grab the information if it's available, but if it isn't we'll just move on.

If the information is there we’ll have so much more information when this triggers,
almost certainly enough to triage this without much investigation.

File Node

Schema

| Predicate | Type | Description |
| ——————- |:————-:| ————:|
| node_key | string | A unique identifier for this node.
| asset_id | string | A unique identifier for an asset.
file_name	string	todo: description
file_path	string	todo: description
file_extension	string	todo: description
file_mime_type	string	todo: description
file_version	string	todo: description
file_description	string	todo: description
file_product	string	todo: description
file_company	string	todo: description
file_directory	string	todo: description
file_hard_links	string	todo: description
signed_status	string	todo: description
md5_hash	string	todo: description
sha1_hash	string	todo: description
sha256_hash	string	todo: description
file_size	int	todo: description
file_inode	int	todo: description
signed	bool	todo: description

FileQuery

with_asset_id

def with_node_key(
 self,
 eq: str,
) -> FileQuery:
 pass

with_asset_id

def with_asset_id(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
) -> FileQuery:
 pass

with_file_extension

def with_file_extension(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> FileQuery:
 pass

with_file_mime_type

def with_file_mime_type(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> FileQuery:
 pass

with_file_size

def with_file_size(
 self,
 eq: Optional["IntCmp"] = None,
 gt: Optional["IntCmp"] = None,
 lt: Optional["IntCmp"] = None,
) -> FileQuery:
 pass

with_file_version

def with_file_version(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> FileQuery:
 pass

with_file_description

def with_file_description(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> FileQuery:
 pass

with_file_product

def with_file_product(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> FileQuery:
 pass

with_file_company

def with_file_company(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> FileQuery:
 pass

with_file_directory

def with_file_directory(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> FileQuery:
 pass

with_file_inode

def with_file_inode(
 self,
 eq: Optional["IntCmp"] = None,
 gt: Optional["IntCmp"] = None,
 lt: Optional["IntCmp"] = None,
) -> FileQuery:
 pass

with_file_hard_links

def with_file_hard_links(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
) -> FileQuery:
 pass

with_signed

def with_signed(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
 starts_with: Optional["StrCmp"] = None,
 regexp: Optional["StrCmp"] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> FileQuery:
 pass

with_signed_status

def with_signed_status(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
) -> FileQuery:
 pass

with_md5_hash

def with_md5_hash(self, eq: Optional["StrCmp"] = None) -> FileQuery:
 pass

with_sha1_hash

def with_sha1_hash(self, eq: Optional["StrCmp"] = None) -> FileQuery:
 pass

with_sha256_hash

def with_sha256_hash(self, eq: Optional["StrCmp"] = None) -> FileQuery:
 pass

with_spawned_from

def with_spawned_from(
 self, spawned_from_query: Optional["ProcessQuery"] = None
) -> FileQuery:
 pass

with_creator

def with_creator(
 self, creator_query: Optional["ProcessQuery"] = None
) -> FileQuery:
 pass

with_readers

def with_readers(self, reader_query: Optional["ProcessQuery"] = None) -> FileQuery:
 pass

Process Node

Schema

| Predicate | Type | Description |
| ——————- |:————-:| ————:|
| node_key | string | A unique identifier for this node.
| ip_address | string | The IP address that this node represents.

ProcessQuery

ProcessQuery.with_node_key

def with_node_key(
 self,
 eq: str,
) -> ProcessQuery:
 pass

ProcessQuery.with_ip_address

 def with_ip_address(
 self,
 eq: Optional["StrCmp"] = None,
 contains: Optional["StrCmp"] = None,
 ends_with: Optional["StrCmp"] = None,
) -> "NQ":
 pass

ProcessQuery.with_first_seen_timestamp

 def with_first_seen_timestamp(
 self,
 eq: Optional["IntCmp"] = None,
 gt: Optional["IntCmp"] = None,
 lt: Optional["IntCmp"] = None,
) -> "NQ":
 pass

ProcessQuery.with_last_seen_timestamp

 def with_last_seen_timestamp(
 self,
 eq: Optional["IntCmp"] = None,
 gt: Optional["IntCmp"] = None,
 lt: Optional["IntCmp"] = None,
) -> "NQ":
 pass

ProcessQuery.with_ip_connections

 def with_ip_connections(
 self,
 ip_connections_query: Optional["IpConnectionQuery"] = None
) -> "NQ":
 pass

ProcessQuery.with_ip_connections_from

 def with_ip_connections_from(
 self,
 ip_connections_from_query: Optional["IpConnectionQuery"] = None,
) -> "NQ":
 pass

ProcessQuery.with_bound_by

 def with_bound_by(
 self,
 bound_by_query: Optional["IProcessInboundConnectionQuery"] = None,
) -> "NQ":
 pass

 These docs are a work in progress!

Process Node

Schema

| Predicate | Type | Description |
| ——————- |:————-:| ————:|
| node_key | string | A unique identifier for this node.
| asset_id | string | A unique identifier for an asset.
| image_name | string | The name of the binary that was loaded for this process.
| process_name | string | The name of the process.
| arguments | string | The arguments, as passed into the process.
| process_id | int | The process id for this process.
| created_timestamp | int | Milliseconds since epoch Unix to time of the process creation.
| terminate_time | int | Milliseconds since epoch Unix to time of the process termination.
| children | [Process] | Child processes of this process.
| bin_file | File | The file that was executed to create this process.
| created_files | [File] | Files created by this process.
| deleted_files | [File] | Files deleted by this process.
| read_files | [File] | Files read by this process.
| wrote_files | [File] | Files written by this process.
| created_connections | [ProcessOutboundConnection] | Outbound Connections created by this process.
| inbound_connections | [ProcessInboundConnection] | Inbbound Connections created by this process.

ProcessQuery

with_node_key

def with_node_key(
 self,
 eq: str,
) -> ProcessQuery:
 pass

with_asset_id

def with_asset_id(
 self,
 eq: Optional[str] = None,
 contains: Optional[str] = None,
 ends_with: Optional[str] = None,
 starts_with: Optional[str] = None,
 regexp: Optional[str] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> ProcessQuery:
 pass

with_image_name

def with_image_name(
 self,
 eq: Optional[str] = None,
 contains: Optional[str] = None,
 ends_with: Optional[str] = None,
 starts_with: Optional[str] = None,
 regexp: Optional[str] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> ProcessQuery:
 pass

with_process_name

def with_process_name(
 self,
 eq: Optional[str] = None,
 contains: Optional[str] = None,
 ends_with: Optional[str] = None,
 starts_with: Optional[str] = None,
 regexp: Optional[str] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> ProcessQuery:
 pass

with_arguments

def with_arguments(
 self,
 eq: Optional[str] = None,
 contains: Optional[str] = None,
 ends_with: Optional[str] = None,
 starts_with: Optional[str] = None,
 regexp: Optional[str] = None,
 distance: Optional[Tuple["StrCmp", int]] = None,
) -> ProcessQuery:
 pass

with_process_id

def with_process_id(
 self,
 eq: Optional[int] = None,
 gt: Optional[int] = None,
 lt: Optional[int] = None,
) -> ProcessQuery:
 pass

with_created_timestamp

def with_created_timestamp(
 self,
 eq: Optional[int] = None,
 gt: Optional[int] = None,
 lt: Optional[int] = None,
) -> ProcessQuery:
 pass

with_terminate_time

def with_terminate_time(
 self,
 eq: Optional[int] = None,
 gt: Optional[int] = None,
 lt: Optional[int] = None,
) -> ProcessQuery:
 pass

with_children

def with_children(
 self,
 child_query: Optional["IProcessQuery"],
) -> ProcessQuery:
 pass

with_bin_file

def with_bin_file(
 self,
 bin_file_query: Optional["IFileQuery"]
) -> ProcessQuery:
 pass

with_created_files

def with_created_files(
 self,
 created_files_query: Optional["IFileQuery"]
) -> ProcessQuery:
 pass

with_deleted_files

def with_deleted_files(
 self,
 deleted_files_query: Optional["IFileQuery"]
) -> ProcessQuery:
 pass

with_read_files

def with_read_files(
 self,
 read_files_query: Optional["IFileQuery"]
) -> ProcessQuery:
 pass

with_wrote_files

def with_wrote_files(
 self,
 wrote_files_query: Optional["IFileQuery"]
) -> ProcessQuery:
 pass

with_created_connections

def with_created_connections(
 self,
 created_connection_query: Optional[
 "IProcessOutboundConnectionQuery"
]
) -> ProcessQuery:
 pass

with_inbound_connections

def with_inbound_connections(
 self,
 inbound_connection_query: Optional[
 "IProcessInboundConnectionQuery"
]
) -> ProcessQuery:
 pass

with_parent

def with_parent(
 self,
 parent_query: Optional["IProcessQuery"]
) -> ProcessQuery:
 pass

 These docs are a work in progress!

Implementing a Graph Generator

Graph Generators are Grapl’s parser services; they take in raw events and they produce a graph representation.

As an example, a geneartor for OSQuery process_event table would take in an event like this:

 {
 "action": "added",
 "columns": {
 "uid": "0",
 "time": "1527895541",
 "pid": "30219",
 "path": "/usr/bin/curl",
 "auid": "1000",
 "cmdline": "curl google.com",
 "ctime": "1503452096",
 "cwd": "",
 "egid": "0",
 "euid": "0",
 "gid": "0",
 "parent": "30200"
 },
 "unixTime": 1527895550,
 "hostIdentifier": "vagrant",
 "name": "process_events",
 "numerics": false
 }

And produce a graph that represents the entities and relationships in the event.

For example, we might have a graph that looks like this (minimally):

// A node representing the child process
ChildProcessNode {
 pid: event.columns.pid, // The child process pid
 created_timestamp: event.columns.time // The child process creation time
}

// A node representing the parent
ParentProcessNode {
 pid: event.columns.parent, // The parent process pid
 seen_at_timestamp: event.columns.time // The time that we saw the parent process
}

// An edge, relating the two processes
ChildrenEdge {
 from: ParentProcess,
 to: ChildProcess,
}

The goal of this document is to guide you through how to build that function.

Getting starting

First off, Grapl’s graph generators are currently written in the Rust programming language. There are a
number of benefits to using Rust for parsers, such as it’s high performance while retaining memory safety.

Don’t be intimidated if you don’t know Rust! You don’t have to be an expert to write a generator.

Installing Requirements

You can install rust by running this script:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Creating the Generator Project

cargo new our-graph-generator
cd ./out-graph-generator/

Modify the Cargo.toml to include our Grapl generator library:

[dependencies]
graph-generator-lib = "*"

This library will provide the primitives we need in order to parse our data into a graph.

Implementing the EventHandler

Grapl’s going to handle all of the work to get data in and out of your function, all
you need to do is add the entrypoint and implement an interface to do the parsing.

The interface is called the EventHandler.

Testing With Local Grapl

Implementing A Graph Model Plugin

Graph Model Plugins allow you to ‘Bring Your Own Model’ to Grapl. For example, if you wanted to implement a plugin for, say, AWS, which Grapl has no native support for, you would be adding an AWS Model to Grapl.

Models are split into a few components.

	Python Schema Definitions - used for provisioning the GraphDB, among other things

	Rust Schema Definitions - for graph generators to use

	Analyzer Query and Views - used for detection and response

You only need to implement 1 and 2, the code for 3 will be generated for you.

Rust Schema Definitions

In order to generate your graphs and implement a Graph Generator you’ll want to build a schema definition in rust, the language that we currently support for graph generation. As a reminder, graph generators are the services that turn raw data, like event logs, into a graph format that Grapl can understand.

You’ll need a relatively recent installation of rust, https://rustup.rs/

You can create a new rust library to define your schemas by running something like:

cargo new grapl-aws-models

We can then add the necessary dependencies for Grapl:

cargo add grapl-graph-descriptions
cargo add derive-dynamic-node

Then, in your favorite IDE, navigate to the src/lib.rs file, where we’ll put our first model - the Ec2Instance.

src/lib.rs

use derive_dynamic_node::{DynamicNode as DeriveDynamicNode, GraplStaticId};
use grapl_graph_descriptions::graph_description::*;

#[derive(Clone, DeriveDynamicNode, GraplStaticId)]
struct Ec2Instance {
 #[static_id]
 arn: String,
 image_id: String,
 image_description: String,
 instance_id: String,
 launch_time: u64,
 instance_state: String,
 instance_type: String,
 availability_zone: String,
 platform: String,
}

impl IEc2InstanceNode for Ec2InstanceNode {
 fn get_mut_dynamic_node(&mut self) -> &mut DynamicNode {
 &mut self.dynamic_node
 }
}

	Currently Grapl’s nodes must have only String, u64, or i64 properties.

The Ec2Instance struct is tagged with two important macros - DeriveDyanmicNode, and GraplStaticId.

The DeriveDynamicNode macro generates some code for us, in this case it will generate an Ec2InstanceNode structure, which is what we’ll store data in.

The GraplStaticId macro allows us to define a property, or properties, that can be used to identify the underlying entity. In AWS this is very straightforward - identity is provided by an Arn. Every node in Grapl must have an identity.

When parsing, we can add data to this node type like this:

let mut ec2_instance = Ec2InstanceNode::new(
 Ec2InstanceNode::static_strategy()
);

ec2_instance.with_launch_time(launch_time);
ec2_instance.with_instance_id(&instance_id);

The Ec2InstanceNode struct was generated by those macros, as was the method static_strategy, and the methods for adding data.

Python Schema Definition

The Python schema definitions will serve two functions:

	They will help us provision Grapl’s graph databases to understand our new model

	They generate more Python code, which we’ll use in our Analyzers to detect and respond to threats using our new models

Our Python Schema for the Ec2InstanceNode will be relatively straightforward to implement.

from grapl_analyzerlib.schemas.schema_builder import NodeSchema

class Ec2InstanceNodeSchema(NodeSchema):
 def __init__(self):
 super(Ec2InstanceNodeSchema, self).__init__()
 (
 self
 .with_str_prop("arn")
 .with_str_prop("image_id")
 .with_str_prop("image_description")
 .with_str_prop("instance_id")
 .with_int_prop("launch_time")
 .with_str_prop("instance_state")
 .with_str_prop("instance_type")
 .with_str_prop("availability_zone")
 .with_str_prop("platform")
)

 @staticmethod
 def self_type() -> str:
 return "Ec2Instance"

Make sure that the return value of the self_type method is the same name as the struct in your Rust model, in this case Ec2Instance.

Using this Ec2InstanceNodeSchema we can generate the rest of the code that we need for building signatures or responding to attacks.

from grapl_analyzerlib.schemas.schema_builder import (
 generate_plugin_query,
 generate_plugin_view
)

query = generate_plugin_query(Ec2InstanceNodeSchema())
view = generate_plugin_view(Ec2InstanceNodeSchema())
print(query)
print(view)

This will generate and print out the code for querying or pivoting off of Ec2Instance nodes in Grapl.

Specifically it will generate the Ec2InstanceQuery and Ec2InstanceView classes.

You can just copy/paste this code into a file and load it up to use. There may be minor changes required, such as imports, but otherwise it should generally ‘just work’.

Modifying the Graph Schema

Grapl already comes with the Grapl Provision.ipynb for provisioning the database. You can import our schemas into that database and then just add them to the schema list, which will be in a cell,

 schemas = (
 AssetSchema(),
 ProcessSchema(),
 FileSchema(),
 IpConnectionSchema(),
 IpAddressSchema(),
 IpPortSchema(),
 NetworkConnectionSchema(),
 ProcessInboundConnectionSchema(),
 ProcessOutboundConnectionSchema(),
 # Plugin Nodes
 Ec2InstanceNodeSchema(),
)

Run the notebook and you should be good to go.

Deploying Analyzers With Plugins

The simplest way to using Plugins in your Analyzers is to publish them to the PyPI and then add them as requirements to the analyzer_executor/requirements.txt, rebuild, and redeploy. At that point your analyzers can import the plugins and you can build out your graph signatures.

 NOTE that setting up Grapl will incur AWS charges! This can amount to hundreds of dollars a month based on the configuration. This setup script is designed for testing, and may include breaking changes in future versions, increased charges in future versions, or may otherwise require manually working with CloudFormation.
If you need a way to set up Grapl in a stable, forwards compatible manner, please get in contact with me directly.

Setting up a basic playground version of Grapl is pretty simple, though currently setup is only supported on Linux (setting up an Ubuntu EC2 instance is likely the easiest way to get access to a supported system).

Installing Dependencies

To get started you’ll need to install npm [https://www.npmjs.com/], typescript [https://www.typescriptlang.org/index.html#download-links], and the aws-cdk [https://github.com/awslabs/aws-cdk#getting-started].

Your aws-cdk version should match the version in Grapl’s package.json file [https://github.com/insanitybit/grapl/blob/readmeupdate1/grapl-cdk/package.json#L29].

You’ll also need to have local aws credentials, and a configuration profile. Instructions here [https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html]

If you intend to use Grapl’s provided demo data, you’ll allso need some Python3 dependencies.

	boto3 [https://github.com/boto/boto3]

	zstd [https://pypi.org/project/zstd/]

Clone, Configure, and Deploy

Grapl comes with binaries already in the repository.

Clone the repo:
git clone https://github.com/insanitybit/grapl.git
cd ./grapl/grapl-cdk/
npm i # install dependencies
cdk boostrap # set up aws-cdk

Add a .env file, and fill it in:

BUCKET_PREFIX="<unique prefix to differentiate your buckets>"

Run the deploy script
./deploy_all.sh

It will require confirming some changes to security groups, and will take a few minutes to complete.

This will give you a Grapl setup that’s adequate for testing out the service.

Provisioning Grapl

At this point you need to provision the Graph databases and create a user. You can use the Grapl Provision notebook in this repo, and
the newly created ‘engagement’ notebook in your AWS account.

[image: ../_images/d5c4d2c62cb7511d13d4919a8c50f5ba0437c0b5.png]

Go to your AWS Sagemaker Console, open the Jupyter Notebook Grapl created for you, and upload the Grapl Provision.ipynb in this repository.

Run the notebook, and it will:

	Set up the schemas for your graph database

	Create a username, as well as a password, which you can use to log into your Grapl instance.

Demo Data

You can send some test data up to the service by going to the root of the grapl repo and calling:
python ./gen-raw-logs.py <your bucket prefix>.

Note that this will likely impose charges to your AWS account.

To use the Grapl UX you must navigate to the index.html in the grapl ux bucket.

Local Grapl

In an effort to make Grapl even easier to get started with we’ve released a version that can run locally on your system! This post will outline through the process of setting up a local Grapl environment, as well as performing a basic engagement to mimic an investigation.

Pre-Requisites:

Grapl requires the following dependencies. Before starting this tutorial, be sure the system you’re planning to run Grapl on has the following software installed:

	docker [https://docs.docker.com/get-docker/]

	docker-compose [https://docs.docker.com/compose/install/]

	A Python3 environment with:

	boto3 [https://github.com/boto/boto3#quick-start]

	zstd [https://pypi.org/project/zstd/]

Grapl has primarily been tested on Linux systems, where Docker support is best. If you’re working with another OS your experience may vary. If you do run into any problem, please file an issue or let us know in our Slack channel [https://join.slack.com/t/grapl-dfir/shared_invite/zt-armk3shf-nuY19fQQuUnYk~dHltUPCw]!

Running Grapl

Getting Grapl set up on your system to run locally is a simple process!

First, clone the Grapl repository, then run the command docker-compose up in the directory where Grapl has been cloned. You may see warnings in your terminal as services boot up. Eventually the build process will reach a steady state - and shouldn’t take more than a few minutes!

git clone https://github.com/insanitybit/grapl.git
cd ./grapl/
docker-compose up

Uploading Your Analyzer

Next, we’ll upload a basic Analyzer (Grapl’s attack signatures) [https://grapl-analyzerlib.readthedocs.io/en/latest/analyzers/Implementing%20An%20Analyzer/], which searches for processes named “svchost” without a whitelisted parent process. We’ve provided a demo Analyzer in the Grapl repository. If you’re interested in the code, see our Analyzer docs.

To upload the Analyzer to Grapl, navigate to the root of the cloned grapl repository and run the following command:

./upload_analyzer_local.sh
Grapl may take a couple of minutes to get started, so if you get an error similar to “could not connect to the endpoint URL”, give Grapl a few more minutes to finish provisioning.

To upload our Analyzer to Grapl, navigate to the root of the cloned grapl repository and run the following command:

./upload_analyzer_local.sh

If you get an error similar to “could not connect to the endpoint URL”, please give Grapl another minute to get started.

Adding Data to Grapl

To get data into Grapl, please run the following command:

python3 ./upload-sysmon-logs.py --bucket_prefix=local-grapl --logfile=eventlog.xml

Logging In to Grapl:
When you navigate to localhost:3000/login, please enter the following credentials into the login form:
Username: grapluser
Password: graplpassword

Working With Grapl Data:

To analyze Grapl Data, open two browser windows in Google Chrome.

In the first window, navigate to the Grapl’s Jupyter Notebook on localhost:8888. The ‘Grapl Notebook’ is where we’ll interact with the engagements using Python.

Log in with the password “graplpassword”. Once logged in, you’ll see a directory with files that will be used later in the tutorial.

The lenses page will show one lens. A lens associates a risk with some kind of correlation point - in this case, an asset.

[image: /home/docs/checkouts/readthedocs.org/user_builds/wimax-grapl/checkouts/stable/docs/_build/doctrees-epub/images/50ff087f447fbd462e42fb03f5d22569f7026964/63c6aa3c1ba918fda55195f5430a36fb0a0c71c3.webp]

In the other window, navigate to localhost:1234 to connect to the Engagement UX. The Engagement UX displays risks in our environment. Credentials are not needed when running Grapl locally, just click the ‘submit’ button to get started!

After logging in, you’ll be redirected to the Grapl UI. The Lenses section will show one lens which associates a risk with some kind of correlation point - in this case, an asset.

To examine the graph of suspicious nodes and edges relating to our asset lens, click on the lens name, in this case ‘DESKTOP-FVSHABR0’.

[image: /home/docs/checkouts/readthedocs.org/user_builds/wimax-grapl/checkouts/stable/docs/_build/doctrees-epub/images/dbfab2e1f5d22422bddb95b17e249c7893ff568d/86c51a16534340e7eec20025d1a442c5f454a8bc.webp]

After clicking the lens name, a graph will appear in the right panel. In this case, a graph with two nodes - “cmd.exe”, “svchost.exe”, and an edge between the two appears on the screen.

[image: /home/docs/checkouts/readthedocs.org/user_builds/wimax-grapl/checkouts/stable/docs/_build/doctrees-epub/images/3322bb961dd8fc1f616c74a7aeb5a79d937c597b/77d3214b7ca55894a77968eebb9f7a2bbe17274e.webp]

Click the node labeled ‘cmd.exe’, and copy the value of node_key.

[image: /home/docs/checkouts/readthedocs.org/user_builds/wimax-grapl/checkouts/stable/docs/_build/doctrees-epub/images/7eb1a75cd441137c7c295c5b46e973c5b019b371/b5d33bd53a388265121b648a04d5c605396f0c27.webp]

The Demo_Engagement notebook creates a new engagement, which shows up on the ‘Lenses’ page.

Replace “<_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/d5c4d2c62cb7511d13d4919a8c50f5ba0437c0b5.png
